RegenerativeMedicine.net

Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study

Authors: Johan Staaf, Dominik Glodzik, Ana Bosch, Johan Vallon-Christersson, Christel Reuterswärd, Jari Häkkinen, Andrea Degasperi, Tauanne Dias Amarante, Lao H. Saal, Cecilia Hegardt, Hilary Stobart, Anna Ehinger, Christer Larsson, Lisa Rydén, Niklas Loman, Martin Malmberg, Anders Kvist, Hans Ehrencrona, Helen R. Davies, Åke Borg, Serena Nik-Zainal

Summary:

Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network–Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2–0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13–0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.

Source: Nature Medicine, 2019